

OPERATION MANUAL

DISPLAY

DN-1x9-X/NE/NW V2

1859K10A(Man_DN1x9_X_NE_NW_TH_Ang)

TETRALEC E.I. S.L.

OPERATION MANUAL

lartet@lartet.com www.lartet.com

INDEX

1-1

LARTET

1	INT	ROD	DUCTION	
2	GE	NER	AL CHARACTERISTICS	
	2.1	Disp	play	2-1
	2.1	.1	DN-109	2-1
	2.1	.2	DN-119	2-1
	2.1	.3	DN-189	2-1
	2.1	.4	DN-129	2-2
	2.2	Wei	ight and consumption	2-3
	2.2	.1	DN-109	2-3
	2.2	.2	DN-119	2-3
	2.2	.3	DN-189	2-4
	2.2	2.4	DN-129	2-4
	2.3	Size	es and dimensions	2-5
	2.3	.1	DN-109 and DN-119	2-5
	2.3	.2	DN-129 and DN-189	2-6
3	INS	STAL	LATION	
	3.1	Cor	nnectors	3-1
	3.2	Pov	ver supply	3-2
	3.3	IP6	5 protection level	3-2
	3.4	Ser	ial Line connector	3-3
	3.4	.1	RS-232 connection between a PC and DN-1x9 display	3-4
	3.4	.2	RS-485 between DN-1x9 display and a PC	3-4
	3.5	Eth	ernet line connection	3-5
4	INI	TIALI	IZATION	
	4.1	Sta	rt-up	4-1
	4.1	.1	Configuration with "Display Discoverer"	4-2
	4.2	Disp	play Configuration	4-3
	4.2	.1	Overview	4-4
	4.2	.2	Global Settings	4-5
	4.2	.3	Network Settings	4-7
	4.2	.4	WIFI Settings	4-8
	4.2	.5	Communication Settings	4-10
	4.2	.6	COLOR Settings	4-10
5	WC	ORK (OPERATION	
	5.1	Wo	rk Operation and accepted data types	5-1
	\			

la	rtet@lartet.com
v	ww.lartet.com

LARTET

INDEX

1-2

6	Е	THE	IERNET BUS COMMUNICATION	6-1
	6.1	E	Ethernet adjustments	6-1
	6.2	N	MODBUS/TCP Protocol	6-2
	6	.2.1	1 MODBUS Functions	6-2
	6	.2.2	2 Register Writing	6-9
	6	.2.3	3 Coil Writting	6-12
	6	.2.4	4 Reading of registers and <i>coils</i>	6-12
	6.3	т	TCP/IP Protocol	6-13
	6.4	U	UDP Protocol	6-13
7	V	/IFI (I COMMUNICATION	7-1
	7.1	V	WIFI Communication adjustments	7-1
8	S	ERI	RIAL BUS COMMUNICATION	8-1
	8.1	S	Serial Communication adjustments	8-1
	8.2	Ρ	Protocols KOSMOS (ASCII) and KOSMOS (ISO 1745)	8-4
	8.3	N	MODBUS RTU Protocol	8-4
	8.4	A	ASCII Protocol	8-5
	8	.4.1	1 ASCII Protocol examples	8-6
9	U	PDA	DATE	9-1
A	NNE	X 1	1: Send information with "Hercules" for TCP, UDP and serial communication .	9-1
A	NNE	X 2:	2: Send information with "QModMaster" for MODBUS TCP and MODBUS RTL	J 9-1
Al	NNE	X 3:	3: Configure and use function blocks to send information using a PLC	9-1

CHAPTER 1

INTRODUCTION

1-1

1 INTRODUCTION

DN series displays are industrial led visualizers presenting numerical relevant data, allowing long distance check. Different number of digits, digit size, control bus and other options can be built on a modular basis:

- 2 to 10 digits.
- Monochrome red leds or 4 colors leds.
- IP41/IP54/IP65 environmental protection
- High brightness for outdoor use.
- Control Bus: Serial (RS-232/RS-485 (Option RS422)), Ethernet and WIFI. Each one with different protocols.
- A text up to 3 characters can be added, allowing data plus units presentation.
- One or two sides.
- Digit height can be **DN-109: 57 mm, DN-119: 100 mm, DN-189: 180 mm y DN-129:250 mm**, so maximum reading distance span from 30, 50, 90 to 125 meters.
- Rugged extruded aluminum box and stainless-steel option.
- 80-240Vac 50/60Hz power supply and +24Vdc option.
- Other options are possible like GPS sync or external probes (T, HR, CO2,)

The range of application is very wide, in applications where important data in industrial processes must be displayed clearly, securely and remotely. Data are collected from networks or direct equipment, PC or PLC.

Display configuration is easily done by WEBSERVER, all parameters and protocols are available conveniently. Defect IP: **10.30.90.10**.

CHAPTER 2

GENERAL CHARACTERISTICS

2-1

I A R T F T

2 GENERAL CHARACTERISTICS

2.1 **Display**

2.1.1 **DN-109**

Power supply	.80 a 240 VAC 50/60Hz. Option 24VDC. .See 2.2.1.
Display	.7 segments 57 mm + decimal dot
	Reading Max. reading distance 30 m
Text (LED)	.Red 3 mm
	.50 mm height
Text (Vinyl)	.White Vinyl 50 mm de height.
Parameter internal memory	.Eeprom.
Environmental Conditions	Working temperature: -20 a 60°C.
	Storage Temperature: -30°C a 70°C
	Humidity: 20-90% HR no condensation. See options
	Max. Ambient light 1000 lux
	Protection: IP41, optionally IP54/IP65

2.1.2 **DN-119**

Power supply	.80 a 240 VAC 50/60Hz. Option 24VDC.
Disnlay	7 segments 100 mm + decimal dot
	Red Max reading distance 50 m
Text (LED)	.Red 3 mm
	.65 mm height
Text (Vinyl)	.White Vinyl 65 mm de height.
Parameter internal memory	.Eeprom.
Environmental Conditions	.Working temperature: -20 a 60°C.
	.Storage Temperature: -30°C a 70°C
	.Humidity: 20-90% HR no condensation. See options
	.Max. Ambient light 1000 lux. See options
	Protection: IP41, optionally IP54/IP65

2.1.3 **DN-189**

Power supply	.80 a 240 VAC 50/60Hz. Option 24VDC. .See 2.2.3.
Display	.7 segments 180 mm + decimal dot
	.Red. Max. reading distance 90 m
Text (Vinyl)	.White Vinyl.
Parameter internal memory	.Eeprom.
Environmental Conditions	.Working temperature: -20 a 60°C.
	.Storage Temperature: -30°C a 70°C
	.Humidity: 20-90% HR no condensation. See options
	.Max. Ambient light 1000 lux. See options
	Protection: IP41, optionally IP54/IP65

CHAPTER 2

GENERAL CHARACTERISTICS

2-2

LARTET

2.1.4 **DN-129**

Power supply	
Consumption	See <u>2.2.4</u> .
Display	
	Red. Max reading distance 120 m
Text (Vinyl)	White Vinyl
Parameter internal memory	Eeprom.
Environmental conditions	Working Temperature -20 a 60°C.
	Storage Temperature: -30°C a 70°C
	Humidity: 20-90% HR no condensation. See options
	Max. ambient light: Full outdoor
	Protection: IP41 option IP54.

GENERAL CHARACTERISTICS

2-3

LARTET

2.2 Weight and consumption

2.2.1 **DN-109**

Ref.	W (kg)	C (W)	Ref.	W (kg)	C (w)	Ref.	W (kg)	C (W)
DN-109/3S	3,2	9,9	DN-109/3S+TL	3,2	11,9	DN-109/3S+TV	3,2	9,9
DN-109/3D	3,2	14	DN-109/3D+TL	3,2	15,7	DN-109/3D+TV	3,2	14
DN-109/4S	3,2	11,5	DN-109/4S+TL	3,7	13,6	DN-109/4S+TV	3,7	11,5
DN-109/4D	3,7	18,4	DN-109/4D+TL	3,7	19,1	DN-109/4D+TV	3,7	18,4
DN-109/5S	3,2	13,2	DN-109/5S+TL	3,7	15,2	DN-109/5S+TV	3,7	13,2
DN-109/5D	3,7	22	DN-109/5D+TL	4,7	25,7	DN-109/5D+TV	4,2	22
DN-109/6S	3,7	14,7	DN-109/6S+TL	4,2	16,8	DN-109/6S+TV	4,2	14,7
DN-109/6D	4,2	24,9	DN-109/6D+TL	4,7	29	DN-109/6D+TV	4,2	24,9
DN-109/7S	4,2	16,4	DN-109/7S+TL	4,2	18,4	DN-109/7S+TV	4,2	16,4
DN-109/7D	4,7	28,1	DN-109/7D+TL	5,2	32,1	DN-109/7D+TV	5,2	28,1
DN-109/8S	4,2	18	DN-109/8S+TL	4,7	20	DN-109/8S+TV	4,7	18
DN-109/8D	5,2	31,3	DN-109/8D+TL	5,7	35,3	DN-109/8D+TV	5,7	31,3
DN-109/9S	4,7	19,7	DN-109/9S+TL	4,7	21,6	DN-109/9S+TV	4,7	19,7
DN-109/9D	5,2	34,5	DN-109/9D+TL	5,7	38,6	DN-109/9D+TV	5,7	34,5
DN-109/10S	4,7	21,2	DN-109/10S+TL	5,2	23,2	DN-109/10S+TV	5,2	21,2
DN-109/10D	5,7	37,7	DN-109/10D+TL	6,2	41,7	DN-109/10D+TV	6,2	37,7

2.2.2 **DN-119**

Ref.	W (kg)	C (W)	Ref.	W (kg)	C (W)	Ref.	W (kg)	C (W)
DN-119/3S	4,2	14,8	DN-119/3S+TL	4,7	17,4	DN-119/3S+TV	4,7	14,8
DN-119/3D	4,2	22	DN-119/3D+TL	5,2	24	DN-119/3D+TV	5,2	22
DN-119/4S	4,7	18	DN-119/4S+TL	5,7	20,6	DN-119/4S+TV	5,7	18
DN-119/4D	5,2	30,6	DN-119/4D+TL	5,7	35,9	DN-119/4D+TV	5,7	30,6
DN-119/5S	5,2	21	DN-119/5S+TL	5,7	23,7	DN-119/5S+TV	5,7	21
DN-119/5D	5,7	36,9	DN-119/5D+TL	6,2	42,1	DN-119/5D+TV	6,2	36,9
DN-119/6S	5,7	24,2	DN-119/6S+TL	6,2	26,8	DN-119/6S+TV	6,2	24,2
DN-119/6D	6,2	43,2	DN-119/6D+TL	6,7	48,5	DN-119/6D+TV	6,7	43,2
DN-119/7S	6,2	27,3	DN-119/7S+TL	7,2	29,9	DN-119/7S+TV	7,2	27,3
DN-119/7D	3,7	29,5	DN-119/7D+TL	7,7	54,8	DN-119/7D+TV	7,7	29,5
DN-119/8S	6,7	30,4	DN-119/8S+TL	7,7	33	DN-119/8S+TV	7,7	30,4
DN-119/8D	7,2	55,6	DN-119/8D+TL	8,2	60,8	DN-119/8D+TV	8,2	55,6
DN-119/9S	7,2	33,4	DN-119/9S+TL	8,2	36	DN-119/9S+TV	8,2	33,4
DN-119/9D	7,7	61,6	DN-119/9D+TL	8,7	66,9	DN-119/9D+TV	8,7	61,6
DN-119/10S	7,7	36,5	DN-119/10S+TL	8,7	39,2	DN-119/10S+TV	8,7	36,5
DN-119/10D	8,2	68	DN-119/10D+TL	9,2	73	DN-119/10D+TV	9,2	68

LARTET

CHAPTER 2

GENERAL CHARACTERISTICS

2-4

2.2.3 **DN-189**

Ref.	W (kg)	C (W)	Ref.	W (kg)	C (W)
DN-189/2S	4,2	17,3	DN-189/2S+TV	5,7	17,3
DN-189/2D	4,7	29,8	DN-189/2D+TV	6,7	29,8
DN-189/3S	5,2	23,4	DN-189/3S+TV	6,7	23,4
DN-189/3D	6,2	42,2	DN-189/3D+TV	8,2	42,2
DN-189/4S	6,2	29,7	DN-189/4S+TV	7,7	29,7
DN-189/4D	7,7	54,8	DN-189/4D+TV	9,2	54,8
DN-189/5S	7,2	35,8	DN-189/5S+TV	9,2	35,8
DN-189/5D	8,7	67,2	DN-189/5D+TV	10,7	67,2
DN-189/6S	8,7	41,8	DN-189/6S+TV	10,2	41,8
DN-189/6D	10,2	79,5	DN-189/6D+TV	11,7	79,5
DN-189/7S	9,7	48	DN-189/7S+TV	11,2	48
DN-189/7D	11,2	92,1	DN-189/7D+TV	13,2	92,1
DN-189/8S	10,7	54,3	DN-189/8S+TV	12,2	54,3
DN-189/8D	12,7	104,6	DN-189/8D+TV	14,2	104,6
DN-189/9S	11,2	60,6	DN-189/9S+TV	13,2	60,6
DN-189/9D	13,7	117,2	DN-189/9D+TV	15,7	117,2
DN-189/10S	12,2	66,9	DN-189/10S+TV	14,2	66,9
DN-189/10D	15,2	129,8	DN-189/10D+TV	16,7	129,8

2.2.4 **DN-129**

Ref.	W (kg)	C (W)	Ref.	W (kg)	C (W)
DN-129/2S	6,7	17	DN-129/2S+TV	9,7	17
DN-129/2D	8,2	30	DN-129/2D+TV	11,7	30
DN-129/3S	8,7	24	DN-129/3S+TV	11,7	24
DN-129/3D	10,7	44	DN-129/3D+TV	13,7	44
DN-129/4S	10,7	30	DN-129/4S+TV	13,2	30
DN-129/4D	13,2	56	DN-129/4D+TV	16,2	56
DN-129/5S	12,2	36	DN-129/5S+TV	15,2	36
DN-129/5D	15,7	68	DN-129/5D+TV	18,7	68
DN-129/6S	14,2	44	DN-129/6S+TV	17,2	44
DN-129/6D	18,2	81	DN-129/6D+TV	21,2	81
DN-129/7S	16,2	49	DN-129/7S+TV	18,7	49
DN-129/7D	20,2	94	DN-129/7D+TV	23,7	94
DN-129/8S	17,7	55	DN-129/8S+TV	20,7	55
DN-129/8D	23,2	106	DN-129/8D+TV	26,2	106
DN-129/9S	19,7	62	DN-129/9S+TV	22,7	62
DN-129/9D	25,7	119	DN-129/9D+TV	28,7	119
DN-129/10S	21,7	68	DN-129/10S+TV	24,2	68
DN-129/10D	28,2	132	DN-129/10D+TV	31,2	132

CHAPTER 2

GENERAL CHARACTERISTICS

2-5

2.3 Sizes and dimensions

2.3.1 DN-109 and DN-119

Ref.	Α	В	Ref.	Α	В
DN-109/3S	288	122	DN-109/3S+T	288	122
DN-109/4S	288	122	DN-109/4S+T	336	122
DN-109/5S	288	122	DN-109/5S+T	382	122
DN-109/6S	336	122	DN-109/6S+T	430	122
DN-109/7S	382	122	DN-109/7S+T	478	122
DN-109/8S	430	122	DN-109/8S+T	526	122
DN-109/9S	478	122	DN-109/9S+T	574	122
DN-109/10S	526	122	DN-109/10S+T	622	122
DN-119/3S	324	177	DN-119/3S+T	504	177
DN-119/4S	414	177	DN-119/4S+T	594	177
DN-119/5S	504	177	DN-119/5S+T	684	177
DN-119/6S	594	177	DN-119/6S+T	774	177
DN-119/7S	684	177	DN-119/7S+T	864	177
DN-119/8S	774	177	DN-119/8S+T	954	177
DN-119/9S	864	177	DN-119/9S+T	1044	177
DN-119/10S	954	177	DN-119/10S+T	1134	177

Fig. 1: DN-109 and DN-119 drawing, plus wall fixing

All measures in millimeters

GENERAL CHARACTERISTICS

2-6

2

2.3.2 **DN-129 and DN-189**

Ref.	Α	В	С	Ref.	Α	В	С
DN-189/2S	340	251	67	DN-189/2S+TV	660	251	67
DN-189/3S	500	251	67	DN-189/3S+TV	820	251	67
DN-189/4S	660	251	67	DN-189/4S+TV	980	251	67
DN-189/5S	820	251	67	DN-189/5S+TV	1140	251	67
DN-189/6S	980	251	67	DN-189/6S+TV	1300	251	67
DN-189/7S	1140	251	67	DN-189/7S+TV	1460	251	67
DN-189/8S	1300	251	67	DN-189/8S+TV	1620	251	67
DN-189/9S	1460	251	67	DN-189/9S+TV	1780	251	67
DN-189/10S	1620	251	67	DN-189/10S+TV	1940	251	67
DN-129/2S	515	366	186	DN-129/2S+TV	985	366	186
DN-129/3S	750	366	186	DN-129/3S+TV	1220	366	186
DN-129/4S	985	366	186	DN-129/4S+TV	1455	366	186
DN-129/5S	1220	366	186	DN-129/5S+TV	1690	366	186
DN-129/6S	1455	366	186	DN-129/6S+TV	1925	366	186
DN-129/7S	1690	366	186	DN-129/7S+TV	2160	366	186
DN-129/8S	1925	366	186	DN-129/8S+TV	2395	366	186
DN-129/9S	2160	366	186	DN-129/9S+TV	2630	366	186
DN-129/10S	2395	366	186	DN-129/10S+TV	2865	366	186

Fig. 2: DN-129 and DN-189 drawing plus wall fixing

All measures in millimeter

CHAPTER 3

INSTALLATION

3-1

I A R T F T

3 INSTALLATION

DN-1x9 installation is easy by complying the following rules.

Choose carefully an installation place that complies with environmental requirements and avoid vibration. Choose the display IP level according to place requirements. IP65 installation details can be found at <u>3.3</u>.

DN-1x9 displays must be installed indoors with maximum 1.000 lux ambient light, far from direct sun light. For outdoors or highly illuminated indoors please use models with high brightness option.

Avoid connect the display to disturbed lines or in places with very high EMC levels.

3.1 **Connectors**

Connectors placement is on the display bottom surface.

Fig. 3: Power supply connector

Fig. 4: General connectors

INSTALLATION

LARTET

<u>____</u>

CHAPTER 3

3-2

General connectors:

- ETH. RJ45 Ethernet.
- USB. Micro USB-A.
- SERIAL. DB-9 connector male. See <u>3.4</u>.
- S1-4. Probe connectors 1 to 4. E.g. for T & HR sensing.
- RELAY 1-2.
 RELAY 1-2

 1 = Relé 1 NO
 4 = Relé 2 NO
 2 = Relé 1 C
 5 = Relé 2 C
 3 = Relé 1 NC
 6 = Relé 2 NC

 AP / AT. Analog in. 4-20mA or 0-10V or temperature
- PT100/PT1000/thermocouple J
- P-CONN. 14 digital input
- Industrial BUS. Profinet/Profibus/Ethercat...
- RELAY 3-4

Actual display can present less connectors than appears at the picture.

3.2 **Power supply**

80 to 240 VAC, 50/60 Hz or 24VDC optionally.

External connection must comply local regulations. A minimum section of 1.5 mm² is recommended.

See pin out at the below picture, depending on AC or DC connection. One aerial connector is provided.

3.3 **IP65 protection level**

Only for IP54/65 option.

A kit is provided:

- External cover
- Overall grommet.
- Cable glands.
- Aerial connector

INSTALLATION

CHAPTER 3

3-3

LARTET

Procedure:

- 1. Withdraw the 6 yellow highlighted screws from display. Save it. See below picture.
- 2. On the cover, pass cables to be connected through glands provided.
- 3. Place and connect aerial connectors.
- 4. Connect aerials to display base connectors.
- 5. Place grommet and cover. Be sure that all are well placed to assure IP.

	<u> </u>	
•	RELAY 3-4 COODDOD RELAY 1-2 RELAY 1-2 RE	•
0		0

- 6. Place and screw again the 6 highlighted screws
- 7. Tight the glands ..

PLEASE BE CAREFUL. BAD INSTALLATION MAY VOID WARRANTY

3.4 Serial Line connector

DN-1x9 displays are ready to work with RS-232 and RS-485. Optionally can be configured to work with RS-232 and RS-422. Please select option with order.

Choosing between 232 and 485/422 is done by the customer using the WEB SERVER configurator. See $\underline{4.2.2}$.

Fig. 6: DB9 pin out RS-232/RS-485

Fig. 7: DB9 pin out RS-232/RS-422.

INSTALLATION

CHAPTER 3

3-4

I A R T F T

3.4.1 RS-232 connection between a PC and DN-1x9 display

Use a standard RS-232 line. Maximum recommended length is 15 m (9.600 bps). Use shielded cable and connect shield to pin 9. Please avoid near disturbances.

3.4.2 **RS-485 between DN-1x9 display and a PC**

Use a standard RS-485 line. Maximum recommended length 1.000 m. Use braided and shielded cable and connect shield to pin 9. Please avoid near disturbances.

At both ends or RS-485 line a 120 Ω termination must be placed.

Fig. 9: Aerial cable example.

CHAPTER 3

INSTALLATION

LARTET

3.5 **Ethernet line connection**

Ethernet connection is done by a RJ-45 connector, located at the bottom of the display.

The display can be connected directly to a computer or to a network, usually using a switch or hub module. We recommend at least 100Base-T4, cat5.

Fig. 10: Direct computer connection diagram.

More than one display can be connected to the same network.

Fig. 11: Example

CHAPTER 4

INITIALIZATION

4-1

4 INITIALIZATION

4.1 **Start-up**

Before connecting to power supply please be sure all the above mentioned advices are done.

During the boot process, the different initialization stages will be indicated on the display, in order:

- (1) Pr0: Each time the display is powered up and before starting the main program, an access time is stablished to enable bootloader. This allows to upgrade display in case of FW corruption. This can be done through the emergency IP address 192.168.1.100. While this time is on, "PR0" is displayed. Refer to point 9.
- (2) Test sequence of the led segments: While this time all display segments are activated one by one, and lately they are deactivated in reverse order, so everyone can check if they all are working properly.
- (3) F.XX: Displays the hardware ID. "XX" corresponds to the specific value corresponding to the actual display. If the unit has the color option, the digits will ight up changing color.
- (4) uX.X: Shows the firmware release.

Display Discoverer

(5) Display is ready: It shows the value send from the PC / PLC, or hyphens if no information is sent (time without data activated), or zero "0" if no device is connected.

Note: To show all the displays connected to network, and allow quick to them please download the "Display discoverer" program (<u>https://www.lartet.com/centro-descargas/</u>).

To configure the display, it must be connected by ethernet cable (RJ45) to the same network as the PC in use. It is also possible to do it by WIFI.

www.lartet.com

CHAPTER 4

INITIALIZATION

4-2

LARTET

4.1.1 Configuration with "Display Discoverer"

	Display Discov	/erer.exe					
Į	🖳 Display Disco	overer			_		×
				_			_
	Refres	h	Identify Display		Chang	je IP	
	IP Address	Display Name	MAC Address	Details			
	10.30.90.66	Searching					
	10.30.90.12	DN1X9	80:1f:12:7b:92:a5	v1.0.00			
	10.30.90.10	DN109NEX01	80:1f:12:ee:0d:64	v1.0.00			
	L						

Fig. 12: "Display Discoverer" software window.

By default, the viewer comes from factory with IP address 10.30.90.10. To change the IP you have to select the default IP and press "Change IP" button. Once done, press "Refresh" to view the new IP. IP address can be changed any time is needed.

If an automatic IP address is desired, press "Auto-Assign IP". This will set display to DHCP mode.

🛃 Display Discov	/erer				_		\times
Refresh		Identify Display			Change	IP	
IP Address 10.30.90.66	Display Name Searching	MAC Address	De	tails			
10.30.90.10	DN109NEX01	80:1f:12:ee:0d:64	v1.	.0.00			
	New IP New IP: Example:1 Auto-Ase	 92.168.1.100 sign IP	ок	×			

Fig. 13: IP changing window.

Double-clicking on the already modified address will open the browser to the web server page. It can also be accessed by typing the IP directly in the browser.

CHAPTER 4

INITIALIZATION

4-3

LARTET

IMPORTANT:

If several new devices are received for installation, keep in mind that they will all come configured with the same IP address. Therefore, prior to its configuration, the IP of some equipment must be changed individually to avoid duplication of addresses.

When working with several displays it is easy to get confused and configure other than the desired one, from the set of installed equipment. For this reason, the "Identify Display" function has been added. Selecting a display from the list of detected devices and clicking this button will cause it to flash 3 times, allowing you to easily identify which device is going to be configured.

4.2 **Display Configuration**

To configure the display parameters access to the device WEBSERVER.

To do this, connect the display to your local network (or directly to a PC), and using the "Display Discover" application, select the desired display. By double clicking the selection you go directly to WEB SERVER.

If you already know the display IP address, you can type it on a WEB BROWSER.

If you want to access the public time servers, you must have an Internet connection.

It is also possible to configure and use the display via WIFI connection. The WIFI connection has its own IP address.

Below, the different WEBSERVER pages are shown:

Fig. 14: Initial window.

The initial screen of the server shows us a vision of the basic information of the viewer and the necessary buttons to scroll through the different configuration options.

- 1. Link to <u>Overview</u>. Information showed in real time.
- 2. Link to <u>Global Settings</u>. It configures the basic settings: Communication interface, data representation format, brightness, etc
- **3.** Link to <u>Network Settings</u>. Sets LAN communication. It allows the configuration of IPs, network masks, Gateway, DNS and DHCP.
- 4. Link to WIFI Settings.
- 5. Link to <u>Communication Settings</u>. Sets the parameters for the communication interface and protocol selected.
- **6.** Link to <u>Color Settings</u>. It allows configuring the color and related parameters in equipment with a color option.
- 7. Shows the current time of the display.
- 8. Shows the current date of the display.
- 9. Shows the value displayed or:
 - a. **OvH:** The value exceeds the maximum able to be displayed.
 - b. OvL: The value exceeds the minimum able to be displayed.
 - c. **TRIMMED:** The number of digits sent is greater that allowed. The display shows the first ones. The full number is displayed on the web server, with "(TRIMMED)" marked".
- **10.** Shows information related to the manufacturing process. It has no relevance to the user. Technical support may ask for this information to solve device issuess.

CHAPTER 4

lartet@lartet.com

www.lartet.com

INITIALIZATION

4-5

LARTET

4.2.2 **Global Settings**

verview	Clobal So	ttings		
	Giubai Se	ungs		
obal Settings	1 DATA PORT:	SERIAL	2 LANGUAGE:	EN ¥
twork Settings	DATA FORMAT			
	3 PRECISION:	USER DEFINED	4 DECIMALS:	3
ifi Settings	5 NEGATIVE NUMBERS	HALF DIGIT	~	
mmunication	SYSTEM CLOCK			1
	6 TIME & DATE:	dd/mm/aaaa:		
ог	7 NTP SERVER:	pool.ntp.org		
	8 TIMER (ON):	12:00 ()		
	9 TIMER (OFF):	12:00 O		
	10 DST:	ON ¥		
	11 SYNC:	SNTP 🗸		
	12 TIME ZONE:	UTC 🗸		
	LIGHT SETTINGS			
	13 LIGHT LEVEL:	MEDIUM Y		
		UT DI DALL		
	Соруг	ight © 2022 LARTET		

Fig. 15: Global Settings Window.

Various parameters and options are modified on the global settings window. Such modifications will also affect the configurable parameters of the web server and subsequent configuration windows.

- 1. Selects the data port that will be used for communication.
- 2. Selects language used. Currently only English version is available.
- 3. Configures the precision of the values to be shown on the display. "AUTO" will set dynamically the number of decimal digits for the value on display according to the digits available on the equipment. If "USER DEFINED" is selected, a field appears to enter the desired decimal digits ...
- 4. Decimal digits used for the ON display value.

Below is a table of examples, in this case a 4-character display is considered.

VALUE TO DISPLAY	PRECISION	DECIMALS	DISPLAYED VALUE
1.23	USER DEFINED	2	1.23
1.23	AUTO	-	1.23
1.234	USER DEFINED	2	1.23
1.234	AUTO	-	1.234
1.235	USER DEFINED	2	1.24
1.235	AUTO	-	1.235
1.23	USER DEFINED	3	1.230
1.2345	USER DEFINED	4	1.235
1.2345	AUTO	-	1.235

Table 1: Example Table

CHAPTER 4

INITIALIZATION

4-6

L A R T E T

Selecting "FULL DIGIT" left digit is used only to show negative sign "-".
 Selecting "HALF DIGIT" left digit takes the value "-" or "-1", so the capacity to display negative numbers is increased.

Example: 5 digit display, minimum value in "FULL DIGIT" is -9999, while in "HALF DIGIT" is -19999.

Fig. 16: "FULL DIGIT" and "HALF DIGIT" real example.

- 6. Manually set the date and time of the viewer. Clicking on the default parameter will show the date and time of the system (PC).
- **7.** SNTP Address/Domain that will be used to obtain the time accurately. By default, the public SNTP server pool.ntp.org is set. It can be configured with an internal company SNTP server or another public access server.
- 8. Time at which the display will turn on.
- **9.** Time at which the display will turn off. To deactivate the automatic on/off you have to set both (on and off) at the same time.
- **10.** Enable daylight saving time. The time change will be done automatically if you select "ON".
- **11.** Allows to select the desired methods to sync the clock:
 - NONE: No sync.
 - ETH_SNTP: Uses the server set to 7.
 - WIFI_SNTP: The same but using WIFI. Note: Will not work in mode "ACCES POINT").
- **12.** Set the display time zone.
- **13.** Sets the light intensity level of the display.
- **14.** Clicking "UPDATE" sends the new settings to the display.

www.lartet.com

LARTET

CHAPTER 4

INITIALIZATION

4-7

4.2.3 Network Settings

overview		Etherne	t	
Global Settings			DNAVO	
Network Settings	1	DISPLAY NAME:	DIVIX9	
	2	MAC Addr	80:1f:12:7h:92:a5	
Vifi Settings	4	IP Addr:	10.30.90.12	
Communication	5	NET Mask:	255.255.255.0	
Color	6	Gateway:	10.30.90.200	
50101	7	DNS1:	8.8.8.8	
	8	DNS2:	8.8.4.4	
			UPDATE	

Fig. 17: Ethernet network settings.

Parameters related to the connectivity of the display are configured on the network settings screen:

- 1. Modifies the name assigned to the display.
- 2. Sets the DHCP protocol or not.
- 3. Shows the MAC address.
- 4. Shows the IP address and allows its changing.
- 5. Shows the Network mask and allows its changing.
- 6. Shows the "Gateway" address and allows its changing.
- 7. Primary DNS. In case DNS is not set correctly, you must configure the SNTP server with your IP and not with your domain.
- 8. Secondary DNS.
- 9. By clicking "UPDATE" the new information is send to display.

IMPORTANT:

- A. These parameters only apply to wired Ethernet. For WIFI, there is a different configuration available. IPs should not be repeated in order not to have duplication conflicts. The viewer currently does not warn if this happens.
- B. The IP address may be corrupted in case of power loss during storage or if the memory is damaged. In these cases, the display will automatically reconfigure the emergency IP address 192.168.1.100.

www.lartet.com

INITIALIZATION

4-8

LARTET

4.2.4 WIFI Settings

CHAPTER 4

Contraction of the second s	WIFI Para	ameters	
obal Settings	WIRELESS NETWOR	K CONFIGURATION	
etwork Settings	1 NETWORK NAME (SSID):	WLAN_MFE_TETRALEC 2 WIFI ST	ATE: CONNECTER
ifi Cattinga	3 NETWORK TYPE:	STATION V 4 CHANNE	L: 1
in Settings	WIRELESS NETWOR	K SECURITY	
nmunication	5 AUTHENTICATION:	WPA2_PSK V	
	6 PASWORD:	•••••	
r	IP CONFIGURATION		
	7 MAC Addr:	dc:4f:22:62:3a:ad	
	8 IP Addr:	10.30.90.16	
	9 NET Mask:	255.255.255.0	
	10 Gateway:	10.30.90.200	
	(11) DNS1:	8.8.8.8	

Fig. 18: Wifi Settings.

In the WIFI settings, the parameters related to the wireless connectivity of the display are configured.

- STATION Mode: Set the name of the WIFI Network to connect to.
 ACCES POINT (AP) Mode: Set the name of the display's WIFI network.
- Indicates the connection status.
 In STATION mode, if the correct password has not been entered, "ERROR" will be displayed, since the connection could not be made.
- Configures the display to connect to an existing WIFI network ("STATION") or generate an AP ("ACCES POINT").

By default, the network in AP mode is called **DIRECT_DN_DISPLAY** with password **12345678**.

- 4. In AP mode allows to select the WIFI channel, between 1 and 11.
- 5. Set the security type of the WIFI network.
- 6. WIFI password.

AP mode: Sets the wifi network password.

ATTENTION: If you forget the password, it is necessary to access the display via wired connection to reconfigure it.

- **7.** Shows the MAC address. There are two different addresses, depending on whether the WIFI is configured in STATION or ACCES POINT.
- 8. Allows you to configure the IP address.

www.lartet.com

CHAPTER 4

INITIALIZATION

4-9

L A R T E T

ATTENTION: It is necessary to check that the IP address to be applied is not occupied.

- 9. Set network mask.
- 10. Set gateway.
- 11. Set DNS. In case DNS is not set correctly, you must configure the SNTP server with your IP and not with your domain.

When modifying any parameter, the button is enabled to send the new information to the display. The process of loading the new configuration takes approximately 15 seconds. In case of changing only the IP address, the process takes approximately 5 seconds and an automatic redirection is performed.

DISPLAY MANAGER	DISPLAY MANAGER
Updating Configuration!! Please wait while the new configuration is being applied 93%	The IP address has changed!! Please click here to go to the webserver if you haven't been redirected within 5 seconds
Copyright @ 2022 LARTET	Copyright © 2022 LARTET

Fig. 19: IP changing windows.

Particularities of WIFI communication

WIFI communication is not identical in functionality to ETHERNET. Here are the points to consider:

- ETHERNET settings cannot be changed via WIFI or vice versa. •
- Except: In case of forgetting the WIFI password, it must be reconfigured via wired • ETHERNET, regardless of the WIFI configuration mode.
- When making a direct WIFI connection to the display, if a Windows operating system is • used, it may take a long time to update the connection status as connected. One way to speed up the process is to close and immediately reopen the option to show "available Wi-Fi networks".
- For optimal performance, it is not recommended to send data to a viewer over WIFI while setting.
- ETHERNET and WIFI IP addresses are independents.

OPERATION MANUAL	lartet@lartet.com www.lartet.com	LAR	TET
CHAPTER 4	INITIALIZATION		4-10

4.2.5 **Communication Settings**

See Communication Settings at chapter 6.

4.2.6 COLOR Settings

		•			
Overview	Color Sett	ings			
Global Settings					
Network Settings	1 COLOR:	R1&R0 CONTROL	~		
Wifi Settings	2 1. R1=OFF R0=OFF:	RED	~		
Will Settings	3 2. R1=OFF R0= ON:	ORANGE	~		
Communication	4 3. R1= ON R0=OFF:	RED	~		
Color	54. R1= ON R0= ON:	GREEN	~		
	RO SETTING				
	ON CONDITION TR		EVENT	-	EVENT VALUE
	VAL>TRIG	000	8 NONE	9	0,0
	R1 SETTING		EVENT		EVENT VALUE
		200	12 NONE	13	
			ATE		

Fig. 20: Color setting window.

In the color settings screen, the parameters related to the color shown by the display are configured. Note: Only applies in units with color option.

R0 and R1 are activation bits that depend on the configuration of parameters 6 and 10, explained below:

- Selects whether the display color is fixed (Red, Orange, Yellow or Green) or dynamic. Depending on the selection between fixed or dynamic, a greater or lesser number of configuration parameters will be displayed.
- **2.** Set the desired color for the case R1 = OFF and R0 = OFF. In 3, 4 and 5 the color is established for each case of activation of bits R0 and R1.
- 3. Select the activation condition of R0.
 - A. **VAL>TRIG:** It activates bit R0 when the value sent to the display is greater than the value established in parameter 7.
 - B. VAL≤TRIG: It activates bit R0 when the value sent to the display is less than or equal to the value established in parameter 7.
 - C. **OFF:** The R0 bit will always be inactive.

www.lartet.com

INITIALIZATION

4-11

LARTET

- 4. Set the activation value of R0.
- 5. Select the desired event for R0:
 - A. **NONE:** The event is activated strictly following what is defined in the activation condition.
 - B. **DELAY:** The event is triggered a fixed number of seconds after the condition is met.
 - C. HYSTERESIS: A hysteresis of the desired value is added to the event.
- 6. Set the event value for R0.
 - A. **NONE:** Without effect.
 - B. **DELAY:** Set the desired delay value in seconds.
 - C. **HYSTERESIS:** Sets the width of the hysteresis window. Its operation can be easily understood in figure 22.

Example:

If you want to program bit R0 with the following activation conditions:

- i. Starting from the condition R0 = OFF, activate bit R0 when the displayed value is > 3.1.
- ii. Starting from the condition R0 = ON, deactivate bit R0 when the displayed value is ≤ 3 .

The following parameters must be defined:

Parameter 6: VAL>TRIG Parameter 7: 3 Parameter 8: HYSTERESIS Parameter 9: 0.1

- 7. Select the activation condition of R1. Conditions explained in 3.
- 8. Set the activation value of R1.
- 9. Select the desired event for R1. Conditions explained in 5.
- **10.** Set the event value for R1. Conditions explained in 6.
- **11.** When modifying any parameter, the "UPDATE" button is enabled to send the new information to the display.

IMPORTANT! In case of selecting a dynamic color and establishing its color based on the value sent, its color cannot be modified through PC/PLC commands. If you want to send the color information by command from the PC/PLC, you must deactivate the activation conditions or select a fixed color.

Selecting a fixed color will always start the display in that color.

In case of visualizing the hyphens when the established time without data expires, they will maintain the previous color.

Fig. 21: Graphic explanation of delay and hysteresis

CHAPTER 5

WORK OPERATION

5-1

ARI

5 WORK OPERATION

The notation for numerical values used in this manual is as follows:

- Hexadecimal numbers: Number followed by "h".
- Decimal numbers: Number followed by "d".
- **Binary** number: Number followed by "b".
- ASCII number: As is.
 Example: ASCII X character, is 58h, 88d or 1011000b.
 ASCII 15 number is 31h 35h, 49d 53d o 110001d 110101d.

XXX or xxx: Sequences of 'X' are used to indicate characters that can be variables, such as versions or dates.

5.1 Work Operation and accepted data types

As mentioned above, this viewer can work with numeric and text (ASCII) data types. If you work in ASCII, there are specific control commands available that allow you to make a data flash and change the color of the digit in displays with color option.

In any communication (EXCEPT MODBUS), the information is sent as an ASCII string. The viewer is in charge of converting said string to a numerical value in case it consists exclusively of numerical information. Later it will also carry out the necessary actions such as rounding, showing only the defined decimals, indicating if the value is out of range, etc.

If the ASCII string sent contains alphanumeric characters, the display will go internally to text mode. This implies that it does not treat decimals or signal values out of range. The text mode allows to represent non-numeric messages that can be displayed in 7-segments such as "E 345", "P-45" or "HELLO".

In MODBUS communication, the type of data to be sent depends on the register that is to be accessed. It will be an ASCII string if register 0 is used, but for the rest the frame must be formed according to the required numerical format (SWORD, UWORD, SDWORD OR UDWORD*). All the information regarding the formation of MODBUS frames can be found in section 6.4.

*SWORD signed word (2 bytes with sign) UWORD unsigned word (2 bytes without sign) SDWORD signed double word (4 bytes with sign) UDWORD unsigned double word (4 bytes withput sign)

Accepted ASCII Character Sequences

The display accepts alphanumeric ASCII characters that can be represented in a 7segment. The valid characters accepted by the display are the following:

Carácter	0	1	2	3	4	5	6	7	8	9	Α	b
HEX	30h	31h	32h	33h	34h	35h	36h	37h	38h	39h	41h	42h
DEC	48d	49d	50d	51d	52d	53d	54d	55d	56d	57d	65d	66d

OPERATION MANUAL

lartet@lartet.com www.lartet.com

WORK OPERATION

5-2

LARTET

CF	IAP	TER	3

Carácter	С	С	d	Е	F	Н	h	i	J	L	n	0
HEX	43h	63h	44h	45h	46h	48h	68h	69h	4Ah	4Ch	4Eh (6Eh)	6Fh
DEC	67d	99d	100d	69d	70d	72d	104d	105d	74d	76d	110d	111d

Carácter	Р	r	U	u			-
HEX	50h	72h	55h	76h	20h	2Eh	2Dh
DEC	80d	114d	85d	117d	32d	46d	45d

Table 2: ASCII characters accepted

www.lartet.com

CHAPTER 6

ETHERNET COMMUNICATION

LARTET

6 ETHERNET BUS COMMUNICATION

6.1 Ethernet adjustments

	DISPLAY MANAGER
Overview	Communication Parameters
Global Settings	
Network Settings	3 ENDBLOCK: NONE V
Wifi Settings	4 REPLY: ACK V
Communication	WARNINGS
Communication	5 TIMEOUT DATA: 0
Color	
	6 UPDATE
(·	Convright @ 2022 LADTET
	Copyright @ 2022 LAKTET

Fig. 22: Ethernet communications web server winndow.

- 1. Drop-down menu to select the protocol to be used:
 - Available protocols **TCP**, **UDP** y **MODBUS/TCP**.
 - Detailed information to be found at pontis 6.2, 6.3 y 6.4.
- **2.** Set the communication port number. It only affects the TCP and UDP protocols. The port to choose must be in the range of ephemeral ports (49152 65535).
- **3.** Allows to select an end of frame. It is used as an enabler, the display will only show the data to which the end of the chosen frame is added. Selecting NONE this feature.

www.lartet.com

ETHERNET COMMUNICATION

6-2

LAR

The available frame endings are as follows:

End block	
NONE	
02h	Value 02h
03h	Value 03h
04h	Value 04h
<cr> 0Dh</cr>	0Dh
<lf> 0Ah</lf>	0Ah
<cr lf=""> 0Dh 0Ah</cr>	0Dh 0Ah
<lf cr=""> 0Ah 0Dh</lf>	0Ah 0Dh
< * CR> 2Ah 0Dh	Host-Link Omron 2Ah 0Dh
Τ.,	

Table 3: ASCII end blocks.

4. Allows to select the display response. This response will be sent whenever the viewer receives data, regardless of whether it is actually viewed.

Available answers are:

Reply					
NONE	No answer				
ACK	Acknowledgment of receipt				
06h	Value 06h				
@ AH AL ED 0 * <cr></cr>	40h Direc A Direc.B 45h 44h 30h 2Ah 0Dh				
06h ENDBLOCK	06h Block end				
Table 4: Answers for ASCII protocol					

5. Sets the time to wait (in seconds) for a new request before the display sets "-" to all characters. The value can be any integer multiple of 10 between 0 and 2550 (inclusive). In case of value 0, the display does not establish any waiting time, the last data will be shown indefinitely.

6. When modifying any parameter, the button is enabled to send the new information to the display.

6.2 MODBUS/TCP Protocol

End block not required.

To use the MODBUS/TCP protocol, the communication port must be properly configured See <u>section 6.1</u>).

6.2.1 **MODBUS Functions**

The MODBUS functions accepted by the displays are shown in the following table:

Tipe		Name	Code					
	Access to internal bits	Read Coils	01h					
	and Coils	Write Single Coil	05h					
Data access		Write Multiple Coils	0Fh					
	16-bits access to	Read Holding Registers	03h					
	internal registers	Write Single Register	06h					
		Write Multiple Registers	10h					
	Table 5: MODDUS Functions							

Table 5: MODBUS Functions.

This section details how the information is structured at the protocol level in order to debug communication problems with a MODBUS frame analyzer.

www.lartet.com

CHAPTER 6

ETHERNET COMMUNICATION

6-3

ARI

If you already have knowledge of this protocol, you can go directly to <u>section 6.4.2</u> where it is explained how the information must be encapsulated in the records according to the type of data that you want to represent, as well as the control characters that are available.

• **Read Coils:** Allows to visualize the state of the internal bits or designated physical Coils. The structure of this function is presented below:

Request		
Function code	1 Byte	01h
Start adress	2 Bytes	0001h to 0005h
Number of Coils	2 Bytes	0001h to 0005h
Answer		
Function code	1 Byte	01h
Number of bytes used	1 Byte	N (N = # Inputs / 8)
Coil status	n Bytes	n = N o N+1
Error		
Error code	1 Byte	81h
Exception code	1 Byte	01 or 02 or 03 or 04

Table 6: "Read Coils" function structure.

Example :

The display only has the 2nd Coil active, to know the status of all of them you can use this function. The following frames are sent and received:

IMPORTANT: Upon receiving the byte (02h) that indicates the status of the Coils, it should be read as follows:

0			2					
Х	Х	Х	0	0	0	1	0	
			Coil #5	Coil #4	Coil #3	Coil #2	Coil #1	
Table 7: Call status reading "V" indicates not used or not relevant								

Table 7: Coil status reading. "X" indicates not used or not relevant.

www.lartet.com

6-4

CHAPTER 6

ETHERNET COMMUNICATION

 Write Single Coil: It is used to assign the ON/OFF state to a Coil. The structure of this function is presented below:

Request		
Function code	1 Byte	05h
Coil Address	2 Bytes	0001h to 0005h
State to write	2 Bytes	0000h(OFF) or FF00h(ON)
Answer		
Function Code	1 Byte	05h
Coil address	2 Bytes	0001h to 0005h
State to write	2 Bytes	0000h(OFF) or FF00h(ON)
Error		
Error code	1 Byte	85h
Exception code	1 Byte	01 or 02 or 03 or 04

Table 8: "Write Single Coil" function structure.

Example:

You want to activate the 1st Coil. The following frames are sent and received:

Raw Data	MARCAS TEMPORALES		DIRECCIONAMIENTO					PDU							
[TCP]>Tx >	12:02:02:730 ENVÍO	-	00 d. Fransa	04 acciór	00	00	00 Long	06 gitud	01 C F	05 ódig unció	00 o ón	01	FF Esta escr	00 do a ibir	
	RESPUESTA			l	denti de Pro	ficado otoco	or Io		ID Unida	d	Direc de la	ción Coil			
[TCP] > Rx >	12:02:02:863	-	00	04	00	00	00	06	01	05	00	01	FF	00	

CHAPTER 6

lartet@lartet.com

www.lartet.com

6-5

F

LART

ETHERNET COMMUNICATION

• Write Multiple Coils: It is used to simultaneously assign the status of several consecutive addressing Coils.

The structure of this function is presented below:

Reques		
Function code	1 Byte	0Fh
Start address	2 Bytes	0001h to 0005h
Number of outputs	2 Bytes	0001h to 0005h
Number of bytes used	1 Byte	N (N = $\#$ Outputs / 8)
Output value	N x 1 Byte	XXXX
Answer		
Function code	1 Byte	0Fh
Start Address	2 Bytes	0001h to 0005h
Number of outputs	2 Bytes	0001h to 0005h
Error		
Error code	1 Byte	8Fh
Exception code	1 Byte	01 or 02 or 03 or 04

Table 9: "Write Multiple Coils" function structure.

Example:

You wish to activate coils 1a, 2a and 5a Coils. The following frames are sent and received:

Raw Data	MARCAS TEMPORALES		D	IRECO	CION/	AMIEN	NTO					PDU	
													# bytes usados
[TCP]>Tx >	12:43:58:751 ENVÍO	- <mark>00</mark> Id.	0B	00	00	00 Long	08 gitud	01	OF Códig	00 °	01	00 05 Cantidad	01 13 Valor de
		Trans	acció	n 	Gaada			F	uncić	on 	.,	de salida	s las salidas
	RESPUESTA		d	le Pro	otoco	lo Io		Unida	d	de i	ccion nicio		
[TCP]>Rx >	12:43:58:886	- 00	0B	00	00	00	06	01	0F	00	01	00 05	

www.lartet.com

F

LART

CHAPTER 6

ETHERNET COMMUNICATION

• **Read Holding Registers:** Allows you to view the content of the desired registers. The structure of this function is presented below:

Request		
Function code	1 Byte	03h
Start address	2 Bytes	0000h to 0011h
Number of registers	2 Bytes	0001h to 0012h
Answer		
Function Code	1 Byte	01h
Number of bytes used	1 Byte	2 x N (N = # registers)
Register Value	N x 2 Bytes	XXXX
Error		
Error Code	1 Byte	83h
Exception Code	1 Byte	01 or 02 or 03 or 04

Table 10: "Read Holding Registers" function structure.

Example:

We want to read two registers with the contents "1234" and "5678", they are located at addresses 1 and 2. To do this, the following frames are sent and received:

Raw Data	MARCAS TEMPORALES	DIR	RECCIONA	MIENTO				PD	U		
							Direc de ini	ción icio			
[TCP]>Tx >	13:24:13:534 -	00 30 (00 00	00 06	01	03	00	00	00	02	
	ENVÍO	ld. Transacción		Longitud	(F	Código Funció	o n		Canti de re	dad gistro	s
	RESPUESTA	lde de	entificado Protocolo	r I o l	D Jnida	d				5	
[TCP]>Rx >	13:24:13:648	00 30	00 00	00 07	01	03	04	12	34	56	78
						÷	# byte usado	s s	Valor regis	de lo tros	S

www.lartet.com

LART

CHAPTER 6

ETHERNET COMMUNICATION

Write Single Register: It is used to assign the value to only one register. • The structure of this function is presented below:

	-	
Request		
Function Code	1 Byte	06h
Register Address	2 Bytes	0000h to 0011h
Register value	2 Bytes	0000h to FFFFh
Answer		
Function Code	1 Byte	06h
Number of bytes used	2 Bytes	0001h to 000Ah*
Register Value	2 Bytes	0000h to FFFFh
Error		
Error Code	1 Byte	86h
Exception code	1 Byte	01 or 02 or 03 or 04

Table 11: "Write Single Register" function structure.

*Depends on the type of data you want to write:

- 2 bytes (0002h): Word type value (with or without sign).

- 4 bytes (0004h): Word type value and reading of information of color and luminosity.

- 6 bytes (0006h): Double Word type value with decimal.

- 8 bytes (0008h): Double Word type value and reading of information of color an luminosity.

-10 bytes (000Ah): Full message reading to a 10digits display.

Example:

We want to write in address register "2" the value "04D2h" to display "1234". To do this, the following frames are sent and received:

Raw Data	MARCAS TEMPORALES			DI	RECC	IONA	MIE	NTO				PDU		
[TCP]>Tx >	16:00:48:929 ENVÍO	- (00 Id. Trans	02 acció	00 n	00	00 Long	06 gitud	01	06 Código funció	00 °	02	04 Valo regis	D2 r del stro
	RESPUESTA			l	dentii de Pro	ficado tocolo	r D	l l	D Jnida	d	Direc del re	ción egistro	,	
[TCP]>Rx >	16:00:49:109	-	00	02	00	00	00	06	01	06	00	02	04	D2

www.lartet.com

LART

CHAPTER 6

ETHERNET COMMUNICATION

6-8

 \vdash

• Write Multiple Registers: It is used to assign the value to several registers simultaneously.

The structure of this function is presented below:

Request		
Function Code	1 Byte	10h
Start Address	2 Bytes	0000h to 0011h
Number of registers	2 Bytes	0001h to 0005h
Number of bytes used	1 Byte	2 x N (N = # registers)
Register Value	N x 2 Byte	XXXX
Answer		
Function Code	1 Byte	10h
Start Address	2 Bytes	0000h to 0011h
Number of registers	2 Bytes	0001h to 0005h
Error		
Error Code	1 Byte	90h
Exception Code	1 Byte	01 or 02 or 03 or 04

 Table 12: "Write Multiple Registers" function structure.

Example:

You want to write in 2 registers, with initial address "0". For the display to show the word "HELLO", it is sent to the registers "48h 4Fh 4Ch 41h". To do this, the following frames are sent and received:

Raw Data	MARCAS TEMPORALES	DIRE	CCION	AMIENT	0		F	DU #	¢ bytes		
[TCP]>Tx >	16:18:25:955	00 07	00 00	00 OB	01	10	00 00	00 02	04 48	4F 4C 4	1
	ENVÍO	Id.		Longitud	C F	.ódig		Cantidad	Valor	de los regis	tros
		Transaccio	n		. '	uncie		de registr	os		
	RESDI ΙΕSTA	ld	entificad	or I	D		Direcciór	1			
	16:18:26:071	00 07			01	10		00.02			
[ICF] Z KA Z	10.10.20.071	- 00 07	00 00	00 00	U	10	00 00	00 02			

www.lartet.com

6-9

LART

CHAPTER 6

ETHERNET COMMUNICATION

6.2.2 Register Writing

The different registers of the viewer allow interaction in different ways, depending on the address to which it is written, the following registers are distinguished:

- Register 02: Send numerical value WORD type with sign.
- **<u>Register 06</u>**: Send numerical value *WORD* type without sign.
- <u>Register 10</u>: Send numerical value *double WORD* type with sign.
- Register 14: Send numerical value double WORD type without sign.
- <u>Register 00</u>: Send ASCII character strings, able to be displayed in 7 segments digits. All possibilities are detailed below:

6.2.2.1 Register 02.

It is used to send numeric values of type WORD with sign. The range of values is from - 32768 to 32767, inclusive.

You have to send 2,3 or 4 bytes of information, with the starting address being 2.

The first two bytes indicate the value to display (in two's complement). The following modify the color and/or brightness of the display.

Color values:

- Red: Third byte 30h.
- Green: Third byte 31h.
- Yellow: Third byte 32h.
- **Orange**: Third byte 33h.

Finally, the luminosity is established by writing in the fourth byte a value between 30h and 34h (minimum 30h – maximum 34h).

REGIS	TER 02	REGISTER 03				
Byte 1	Byte 2	Byte 3	Byte 4			
<xxh></xxh>	<xxh></xxh>	<xxh></xxh>	<xxh></xxh>			
Numerio	al Value	Color	Luminosity*			

Table 13: Register 02 and 03 values.

* For monochrome displays the color selection byte can be used to manage flicker. Typing 08h starts the flashing, 09h ends it.

Example:

To easy the sending of information, the <u>function Modbus 10h</u> is used. To display the value "-3270" the following content must be sent via Modbus:

REGIST	FER 02	REGISTER 03			
Byte 1	Byte 2	Byte 3	Byte 4		
F3h	3Ah	30h	34h		
Numeric	al Value	Color	Luminosity*		
Numeric	al Value	Color	34n Luminosity		

Table 14: Register 02 and 03 values.

CHAPTER 6

ETHERNET COMMUNICATION

I A R

6-10

Raw Data

Byte 2 Byte 4 [TCP]>Tx > 17:21:23:636 - 00 0A 00 00 00 0B 01 10 00 02 00 02 04 F3 3A 30 34 [TCP]>Rx > 17:21:23:794 - 00 0A 00 00 00 06 01 10 00 02 00 02 Byte 1 Byte 3 Sys > 17:21:23:795 - values written correctly.

Fig. 23: Example to show "-3270".

6.2.2.2 Register 06.

It is important that in this case the starting address is 6.

This register is used identically to the previous one, but it is used for numeric values of type WORD without sign. The range is changed from 0 to 65535. Color and lightness are handled identically. Table 21 can be used also for this case.

For example, the same frame is sent as in the register 02 example, but the starting address is changed to 06. In this case, 62266 is displayed, if the device has 5 digits or more. Otherwise the display shows "OvL".

6.2.2.3 Register 10.

It is used to send numeric values of type double WORD with sign. The range of values is -2,147,483,648 to 2,147,483,647.

You have to send between 6 and 8 bytes of information, the starting address being 10. The first four bytes indicate the value to display (in A2's complement). The next two modify the position of the decimal point. The last two (optional) the color and brightness of the display. The color and luminosity values work identically to the previous cases.

REGIST	REGISTER 10 REGISTER 11		REGIS	TER 12	REGISTER 13		
Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
<xxh></xxh>	<xxh></xxh>	<xxh></xxh>	<xxh></xxh>	<xxh></xxh>	00h	<xxh></xxh>	<xxh></xxh>
٩	Jumerica	al Value		Point Pos.	Not used	Color	Luminosity*
		Tabl		minter 40 44	40 and 40 year		

Table 15: Register 10, 11, 12 and 13 values.

* * For monochrome displays the color selection byte can be used to manage flicker. Typing 08h starts the flashing, 09h ends it.

Example:

To easy the information sending, function Modbus 10h is used. To show "-32.70" value the following content must be send.

REGIST	EGISTER 10 REGISTE		TER 11	REGIS	TER 12	REG	GISTER 13
Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
FFh	FFh	F3h	3Ah	02h	00h	31h	34h
Numerical Value				Point Pos.	Not used	Color	Luminositv*

Table 16: Register 10, 11, 12 and 13 values.

www.lartet.com

CHAPTER 6

ETHERNET COMMUNICATION

Raw Data

 Byte 2
 Byte 4
 Byte 6
 Byte 8

 [TCP]>Tx > 17:47:23:389 - 00
 25
 00
 00
 0F
 01
 10
 00
 04
 08
 FF
 FF
 F3
 3A
 02
 00
 31
 34

 [TCP]>Rx > 17:47:23:570 - 00
 25
 00
 00
 06
 01
 10
 00
 0A
 00
 04
 Byte 1
 Byte 3
 Byte 5
 Byte 7

 Sys > 17:47:23:570 - values written correctly.
 5
 5
 5
 5
 5
 5
 5

Fig. 24: Example to send "-32.70" MODBUS/TCP.

6.2.2.4 Register 14.

It is important that in this case the starting address is 14.

This register is used identically to the previous one, but it is used for numeric values of type double WORD without sign. The range is changed from 0 to 4,294,967,295. Decimal point, color, and lightness are handled identically. Table 23 can be used interchangeably for this case.

For example, the same frame is sent as in the register 10 example, but the starting address is changed to 14. In this case, 4.294.964.026 is displayed, if the device has 10 digits or more. Otherwise the display shows "OvL".

6.2.2.5 Register 00.

It is used to write text on the display (in ASCII characters). Keep in mind that when writing to a 7-segment led, only certain values can be set (See <u>section 5.3.2</u>). For this, 10 registers are available, starting at address 0. Each register can contain two ASCII characters.

REGISTER 0		REGIS	TER 1		REGIS	SISTER N		
Byte 1	Byte 2	Byte 3	Byte 4	•••••	Byte 2*N+1	Byte 2*N+2		
<xxh></xxh>	<xxh></xxh>	<xxh></xxh>	<xxh></xxh>		<xxh></xxh>	<xxh></xxh>		
ASCII 1	ASCII 2	ASCII 3	ASCII 4		ASCII 2*N+1	ASCII 2*N+2		

Table 17: Register 00 values.

Example:

To facilitate the sending of information, the <u>function Modbus 10h</u> is used.

You want to display the text "E 523" to indicate an error in an industrial process. The following content must be sent via Modbus (See <u>table ASCII chars</u>).

REGISTER 0		REGISTER 1		REGISTER 2	
Byte 1	Byte 2	Byte 3 Byte 4		Byte 5	Byte 6
45h	20h	35h	32h	33h	00h
"E"		"5"	"2"	"3"	

Table 18: Register 0, 1 & 2 values.

Raw Data

 Byte 2
 Byte 4
 Byte 6

 [TCP] > Tx > 09:25:58:540 - 00 27 00 00 00 01 10 00 00 03 06
 45 20 35 32 33 00

 [TCP] > Rx > 09:25:58:685 - 00 27 00 00 00 06 01 10 00 00 03
 Byte 1
 Byte 3

 Byte 5
 Sys > 09:25:58:685 - values written correctly.
 Byte 1
 Byte 3

Fig. 25: Example to show "E 523".

I A R

www.lartet.com

LART

6-12

CHAPTER 6

ETHERNET COMMUNICATION

As can be seen, as many registers as necessary are written. In this case, since the number of characters is 5 (odd), 3 registers must be used and the last byte must be set to 00h.

If this method is used, the color or light intensity of the display cannot be modified for reasons of compatibility with previous products. It is possible to change the color by adding a previous step to the message, first writing to any register associated with numerical values (modifying the color) and then writing the message to register 00.

6.2.3 Coil Writting

In addition to the registers, with MODBUS/TCP it is possible to carry out the <u>function 0Fh</u> "Write Multiple Coils" function to activate/deactivate the relays or set the flashing of the display.

They can also be modified with <u>function 05h</u> "Write Single Coil", but function 0Fh is used in the examples for simplicity.

5 coils are established that can be activated or deactivated, starting from **START ADDRESS 1**. In order, the coils are used to establish the following parameters:

- Coil 1. Activates or deactivates relay 0.
- Coil 2. Activates or deactivates relay 1.
- Coil 3. Activates or deactivates relay 2. (Relay 2 is an option)
- Coil 4. Activates or deactivates relay 3. (Relay 3 is an option)
- **Coil 5.** Activates or deactivates blinking.

All the coils are activated at "1" and deactivated at "0". It is possible that your display model does not have coils 3 and 4, in which case their value will not affect any functionality.

Example:

You want an alarm to be activated for a given value and the display to start flashing the displayed value. For this it is necessary to activate one of the relays and the flashing of the equipment. In this case, COIL1 must be activated to switch RELAY0 and COIL5 to activate the flashing.

Raw Data

Fig. 26: Example of coil activation.

6.2.4 Reading of registers and *coils*

The described displays allow the reading of both registers and coils.

The system works identically to writing, the desired registers or coils and their address are selected to read the status.

It can be read with the MODBUS functions <u>01h</u> "Read Coils" and <u>03h</u> "Read Holding Registers".

The frames necessary to carry out these functions are included in section 6.4.1, "<u>Read</u> <u>Coils</u>" and "<u>Read Holding Registers</u>", respectively.

www.lartet.com

CHAPTER 6

ETHERNET COMMUNICATION

6-13

6.3 TCP/IP Protocol

To use the TCP/IP protocol, the communication port must be properly configured (See <u>section 6.1</u>).

In order for the viewer to display a frame, it must be terminated with an end of frame that is recognizable.

The last character sent is displayed to the right of the display.

The communication port is set automatically, but can be changed at any time.

The display will be able to receive decimal numbers and ASCII characters. Once the desired values are sent, there are certain control parameters to modify the color, the luminosity and the blinking. These parameters must be sent **AFTER** the values to be displayed.

Color				
Order	ASCII Code			
Red	"X0" o "x0"			
	(7830h o 5830h)			
Green	"X1" o "x1"			
	(7831h o 5831h)			
Yellow	"X2" o "x2"			
	(7832h o 5832h)			
Orange	"X3" o "x3"			
Ū	(7833h o 5833h)			
<u>h</u>				

L	uminosity
Order	ASCII Code
Minimal	"Y0" or "y0"
	(7930h or 5930h)
Low	"Y1" or "y1"
	(7931h or 5931h)
Medium	"Y2" or "y2"
	(7932h or 5932h)
High	"Y3" or "y3"
-	(7933h or 5933h)
Maximum	"Y4" or "y4"
	(7934h or 5934h)

Blinking			
Order	ASCII Code		
Start	08h		
End	09h		

L A R T

Example:

The following table shows some examples combining numeric values in ASCII format and control parameters.

Frame to send							Displayed value	
%QBx	%QBx+1	%QB x+2	%QB x+3	%QB x+4	%QB x+5	%QB x+6	%QB x+7	*
38h	39h	2Eh	35h	37h	32h			89.572 ⁽¹⁾
2Dh	36h	37h	2Eh	31h	30h	08h		-67.10 ⁽²⁾
36h	2Eh	34h	36h	32h	33h			6.4623
36h	2Eh	34h	36h	32h	33h	58h	31h	6.4623 ⁽³⁾

(1) In monochrome or color equipment set to red by default

(2) Blinking value

(3) Setting the color of the digits with the control command.

*For PLC, %QBx corresponds to a certain position in the output address space, from that address the values must be consecutive.

6.4 UDP Protocol

The functionality of the parameters explained in the previous section (protocol TCP/IP) also apply to the UDP protocol.

CHAPTER 7

WIFI COMMUNICATION

7-1

7 WIFI COMMUNICATION

The bandwidth of WIFI communication is reduced compared to the wired connection. As a result, the setup experience will always be smoother via cable. This difference will not be noticeable once the device is configured and dedicated exclusively to data visualization.

For these same reasons, it is recommended not to transmit information with the display while it is being configured via WIFI.

7.1 WIFI Communication adjustments

Overview	Commu	nicatio	n Pa	aram	neters	
Global Settings	DROTOCOL.			DODT.	51650	
letwork Settings	ENDBLOCK:	NONE	~	PURI	51050	
Wifi Settings	REPLY:	NONE	~			
Color	TIMEOUT DATA	s: 0				
			UPDA	TE		

Fig. 27: WIFI communication parameters window.

The configuration screen for WIFI communication is very similar to that for wired Ethernet. It differs in that there is no protocol option (there is only communication via UDP) and an additional type of response is added, the "ECHO" response is limited to returning the same message that has been received.

The UDP protocol on WIFI work the same as **ETHERNET**.

CHAPTER 8

SERIAL COMMUNICATION

IART

8 SERIAL BUS COMMUNICATION

This section includes the settings of the web server of the viewer and the operation of the available protocols in case of communication through the serial bus.

8.1 Serial Communication adjustments

Overview	Commu	nication	Parameters	5
Global Settings		1		
Network Settings	2 PROTOCOL:	MODBUS RTU	3 KOSMOS CMD:	D v
Wifi Settings	4 INTERFACE:	RS232	5 TIMEOUT DATA:	0
•	6 HEADER:	NONE	~	
Communication	7 ENDBLOCK:	<cr> 0Dh</cr>	\sim	
Color	8 REPLY:	NONE	~	
	SERIAL LINE			
	9 BAUDRATE:	19200 🗸	10 DATA SIZE:	8 bits 🗸
	11 PARITY:	NONE ~	12 STOP BITS:	1 bit 🗸
	MESSAGE POST	PROCESSING		
	13 MSG.OFFSET:	0	14 VIEW:	NORMAL ~
	15 MSG.CURSOR:	0		
		16	UPDATE	

Fig. 28:Serial communication window.

In the communication settings screen, the parameters related to the communication of the display are configured:

- 1. Modifies the internal address that is assigned to the display.
- 2. Protocol selection.

KOSMOS protocol it's explained in the manufacturer manual.

MODBUS RTU y **ASCII** protocols are explained in 7.3_Protocolo_MODBUS_RTU and 7.4 chapters_Protocolos_Serie.

3. Menu to select the orders for KOSMOS protocol.

Order	Function
D	Display value
Т	Tare value
Р	High peak value
V	Low peak value
Y	Peak to peak value
Z	Total value

CHAPTER 8

SERIAL COMMUNICATION

8-2

LART

For more information on the function of these commands, refer to the manufacturer's manual.

4. Select the physical interface type of the serial connector.

Usually the user can choose between **RS-232** and **RS-485**. If the you have a display with **RS-422** option, you can choose between **RS-232** and **RS-422**, see explanation on <u>3.4</u>.

- 5. Assigns the waiting time (in seconds) for a new request before the display shows "-" in all digits. The value can be any integer multiple of 10 between 0 and 2550 (inclusive). In case of value 0, the display does not establish any waiting time, the last data will be shown indefinitely.
- **6.** Allows you to select a message header. ASCII protocol only. The available headers are listed below:

Header	
NONE	
02h	Valor 02h
02h AH AL	02h Value + Display address (H Byte L Byte)
02h AL AH	02h + Display Address (L Byte H Byte)
@ AH AL E D	Host-Link Omron
AH AL	Display address (H Byte L Byte)
AL AH	Display address (L Byte H Byte)
	Table 19: ASCII protocol boaders

 Table 19: ASCII protocol headers.

7. Allows you to select the end of the message

Endblock	
<cr> 0Dh</cr>	0Dh.
<lf> 0Ah</lf>	0Ah.
<cr lf=""> 0Dh 0Ah</cr>	0Dh 0Ah.
<lf cr=""> 0Ah 0Dh</lf>	0Ah 0Dh.
03h	03h Value
< * CR> 2Ah 0Dh	Host-Link Omron 2Ah 0Dh.
Table 2	0: ASCII protocol and blacks

Table 20: ASCII protocol end blocks.

8. Allows you to select the display response.

Reply	
NONE	No response from display
@ AH AL ED 0 * <cr></cr>	40h H Byte_Dir L Byte_Dir 45h 44h 30h 2Ah 0Dh
HEADER 06h ENDBLOCK	Header 06h End block
	Table 21: ASCII protocol rophy

Table 21: ASCII protocol reply.

- **9.** Select the transfer rate in bits/s.
- 10. Select the number of bytes per character:

You can select **7** or **8** bits.

If the MODBUS RTU protocol is used, it cannot be modified, the value is set to 8 bits.

11. Sets the parity bit for error control.

The possible modes are None, Even Parity, and Odd Parity.

- **12.** Select the number of stop bits, 1 or 2 bits for information synchronization.
- **13.** Sets the value of the position of the first character to be displayed.

www.lartet.com

SERIAL COMMUNICATION

8-3

LART

This option is intended to prevent the display of headers or labels that other devices may send along with the information. For example, a scale could send "Weight (Kg): 203.5".

If the value 1 is applied, all the characters up to the first number will be ignored, very useful if the label is variable (NET WEIGHT (Kg), AVERAGE WEIGHT (Kg), etc...).

Values greater than 1 allow focusing on a part of the numerical data, useful in processes where the numerical value does not vary much. In this way, for example, the thousands could be ignored in a process where only the units or tens change.

Example: The information "PESO 203.5" is sent. Depending on the value of this element (**13**), the following situations would occur:

- A. **0.** As many characters as the display has are shown. "PESO 203.5" is displayed.
- B. **1.** Everything up to the first numeric character is skipped. "203.5" is displayed.
- C. **7.** The first 7 characters are skipped. "3.5" is displayed.
- **14.** Allows to invert the order of the value displayed:

Example: The value "123456" is sent to the display, depending on the chosen parameter two situations can be displayed:

- A. NORMAL. Shows "123456".
- B. INVERTED. Shows "654321".
- **15.** This parameter complements parameter **13**, but for the final part of the message. That is, you choose how many values to display counting from MSG.OFFSET.

The value of this parameter has different effects depending on the previous element (14).

A. **NORMAL.** Shows only the beginning of the message up to the designated position.

Example: With MSG.CURSOR = 3. If "123456" is sent, "123" is displayed.

Example 2: With MSG.CURSOR = 2. If "123456" is send, "12" is displayed.

B. **INVERTED.** Skips the start of the message (pre-reversal) to the designated position.

Example 1: With MSG.CURSOR = 3. If "123456" is send, "654" is displayed.

Example 2: With MSG.CURSOR = 2. If "123456" is send, "6543" is displayed.

Fig. 29: MSG.OFFSET i MSG.CURSOR use graphic.

16. When modifying any parameter, the button is enabled to send the new information to the display.

8.2 Protocols KOSMOS (ASCII) and KOSMOS (ISO 1745)

The specific information of the KOSMOS protocols must be consulted in the manufacturer's manual of the equipment in use.

As can be seen, in the frames the addressing in the RTU is slightly different and a CRC (Cyclic Redundancy Check) is added. The PDU remains unchanged between both protocols. Regarding the use of Modbus functions and display registers, MODBUS RTU is identical to the MODBUS/TCP Ethernet protocol.

See <u>section 6.4</u> for any necessary information.

Example: To send "HOLA" (48h 4Fh 4Ch 41h) the following frames are stablished:

OPERATION MANUAL	<u>larte</u> ww	et@lartet.com /w.lartet.com		ART	ΕT
CHAPTER 8	SERIAL	COMMUNICATION	N		8-5
Raw Data MAR	CAS DIRECCIONAMIENTO	PDU		CRC	
[RTU]>Tx > 11:45:	58:129 - 01 10 0	00 00 00 02 04	48 4F 4C 41	21 28	
[RTU]>Rx > 11:45:	58:280 - 01 10	00 00 00 02 41	1 C8		
Sys > 11:45:58:280) - values writter	n correctly.			

8.4 **ASCII Protocol**

This protocol allows easy communication with any device that has a serial line and the protocol can be configured, such as a computer, a PLC working in RS-232 mode, etc. Another possibility is to connect several displays to the same RS-485 network.

With this protocol, the display works in slave mode, when receiving data it checks if the header and the end of the block correspond to those configured. If so, it displays the content of the data. The frame is configurable to be able to adapt to many protocols that use the ASCII format.

To understand how the protocol can be configured, the terms used are described below:

Transmission BLOCK: It is made up of all the bytes necessary to display a value. For each successfully received transmission block the display will be updated with a new value. Each block consists of three parts: The header (Header), the data and the end of the block (End block).

HEADER: It is used to identify the beginning of the block. You can choose between 6 formats or without header.

Data BLOCK: Contains the information to be displayed. It is possible to select the part of the block to be displayed.

END BLOCK: It is used to identify the complete arrival of the block. You can choose between 6 types of end block.

In addition, there are control commands that allow you to start and end the blinking of one or more characters, as well as in displays with a color option, to set the color of the display (as long as it does not have automatic color conditions).

08h Start of blinking characters

09h End of blinking characters

Color option	
58h (o 78h) + 30h 58h (o 78h) + 31h 58h (o 78h) + 32h 58h (o 78h) + 33h	<u>Red digits</u> <u>Green digits</u> <u>Yellow digits</u> <u>Orange digits</u>

The mentioned control commands (blink and color) should be placed at the end of the frame.

www.lartet.com

CHAPTER 8

SERIAL COMMUNICATION

8-6

 \vdash

LART

8.4.1 ASCII Protocol examples

Example 1: Send a message from a computer to the viewer

The configuration for this example is as follows:

- Display address: 08
- Header: 02h AH AL
- End block: CR
- MSG. OFFSET: 0
- VIEW: NORMAL
- Send data: 358964

Transmission block

ASCII Block		0	8	3	5	8	9	6	4	CR
HEX Block	02h	30h	38h	33h	35h	38h	39h	36h	34h	0Dh
	ŀ	HEADE	R		[Datos e	nviados	5		ENDBLOCK

Send value 4 digits					0	u	Н
Send Value 8 digits		3	5	8	9	6	4

On 4-digit equipment, "OuH" is displayed because the value is too large to be displayed.

Example 2: Send a message from a scale to the display.

The configuration for this example is as follows:

- Display address: 14
- Header: 02h AL AH
- End block: CR LF
- **MSG. OFFSET:** 1 (To display only the numerical value)
- VIEW: NORMAL
- MSG.CURSOR: 4
- Send data: PESO 15.8kg

Transmission block

ASCII Block		4	1	Ρ	Е	S	0		1	5	•	8	k	g	CR	LF
HEX Block	02h	34h	31h	50h	45h	53h	4Fh	20h	31h	35h	2Eh	38h	6Bh	67h	0Dh	0Ah
	Н	EADE	R					Se	end Da	ata					ENDB	LOCK

OPERATION MANUAL

lartet@lartet.com www.lartet.com

CHAPTER 8

SERIAL COMMUNICATION

Send value 4 digits		1	5.	8	
---------------------	--	---	----	---	--

Choosing **MSG.OFFSET = 1** the display has ignored all the characters prior to the first numerical value, without the need to count them.

It is important to choose MSG.CURSOR = 4 ("15.8" is made up of 4 characters "." included), since after the first number the viewer will try to display everything up to the end block.

If **NOT** selected, the following displays would be obtained. Since display can not present some chars like (k and g), it displays "-".

Send value 4 digits				1	5.	8	-
Send value 8 digits			1	5.	8	-	-

F

LART

CHAPTER 9

UPDATE

9-1

LARTET

9 UPDATE

Should you need to update the *firmware*, please download **MicroBoot** program form (<u>https://www.lartet.com/centro-descargas/</u>) and proceed as follows .

IMPORTANT: The update must be done through a wired ETHERNET

Steps to do the *firmware* upload:

1. Start the program and go into settings.

MicroBoot v2.04	– 🗆 X
MicroBoot for OpenBLT using XCP on RS232	
Select file to start the firmware update	Browse
	Settings Exit

2. Check program settings:

🖀 Settings				×
Communicatio	n Interface	Session Protocol	Miscellaneous	
Interface select	tion: XCF	on TCP/IP	Y	
Communicatio	on	В		A
Address:	10.30.90.1	0		
Port:	1000	C		
			ОК	Cancel

- A. Establish TCP/IP communication-
- B. Configure the IP address that has been defined for the wired network.
- C. Configure 1000 port.
 - **3.** Accept the settings and select the desired firmware.

During the firmware update process the display will show "Pr1".

If the update takes too long to start, cancel the process, check the IP configured in the MicroBoot, the Ethernet cable and the Firewall rules and repeat the *firmware*.

The program itself has a "timeout" notice if it detects that too much time has passed, but it has no way of knowing if the process has finished and it does not interrupt its loading. It is only a time notice.

OPERATION MANUAL	lartet@lartet.com www.lartet.com		Γ
CHAPTER 9	UPDATE	9-2	

NOTE: If the loading process is interrupted (power failure, cable disconnection...) the update remains incomplete and the display does not have a valid program. Under these circumstances, the only way to load proper firmware is to power on the unit and load a valid program (via MicroBoot) to the emergency IP address **192.168.1.100** when the display shows "Pr0".

ANNEX I

ANNEX 1: Send information with "Hercules" for TCP, UDP and serial communication

When carrying out the communication using the "Hercules" program, certain aspects must be taken into account so as not to make mistakes when sending values in decimal or hexadecimal.

S Hercules SETUP utility by HW-group.com					\times
UDP Setup Serial TCP Client TCP Server UDP Test Mode	About				
Received/Sent data		TCD			
Connecting to 10.30.90.12 Connected to 10.30.90.12		Module IP	2	Port)
1257 A1		Ping		X Discor	nnect
		TEA author TEA key 1: 01020 2: 05060 Authorizatio	ization)304)708 n code	3: 0904080 4: 00000000	0
	Γ	PortStore to	est		
		🔲 NVT dis	able		
		Re	eceived	<u>t</u> est data	
		Redirect	to UDP		
Send					
1234 \$58\$31	HEX_	Send	H	U gro	u p
09	HEX	Send	Herce	.HW-group	com
	□ HEX	Send		Version 3	.2.8

Fig. 32: Example TCP. "1234" in green.

First, it is necessary to establish the communication information as it has been defined in the web server, according to the type of communication established.

There are several ways to send information:

- Write the values directly, they will be applied one by one as independent messages.
- Write the commands under "Send", this allows you to send the entire frame simultaneously. The program will automatically read numbers as decimals and letters as ASCII characters. To indicate to the program that we want to enter a hexadecimal number, a "\$" must be applied before the value.
- Write the commands under "Send" by selecting the "HEX" box. This allows the user to directly type ASCII values in hexadecimal form, without the need to add symbols.

This way of sending information is common to TCP, UDP, and serial modes.

I A R T F T

ANNEX I

Example web server configuration for TCP:

- 1. "Global Settings" Window., **DATA PORT** = ETHERNET.
- "Network Settings" window, place right network parameters, **IP Addr** = 10.30.90.12 like in "Hercules".
- 3. "Communication Settings" window, **PROTOCOL** = TCP.

If you want to enable the display, you can configure an "ENDBLOCK", but it is not necessary for communication.

Example web server configuration for UDP:

Same as above but with **PROTOCOL** = UDP

Example web server configuration for RS-232:

- 1. "Global settings" window, **DATA PORT** = SERIAL.
- 2. "Communication settings" window:
 - **ADDRESS** = 14.
 - **PROTOCOL** = ASCII.
 - **INTERFACE** = RS232.
 - **HEADER** = 02h AL AH (for example, message must agree)
 - **ENDBLOCK** = <CR LF> 0Dh 0Ah
 - **REPLY** = NONE
 - **BAUDRATE** = 19200
 - **PARITY** = NONE
 - **DATA SIZE** = 8 bits
 - **STOP BITS** = 1 bit
 - MSG.OFFSET = 0
 - VIEW = NORMAL
 - MSG.CURSOR = 0

To send the message with "Hercules" a USB to RS-232 converter is used. To find out which "COM" port it is set to, consult it in the Windows "Device Manager". The program is configured identically to the server and the following frame is sent:

02 34 31 31 32 33 34 58 31 0D 0A

In this case, said frame contemplates all the necessary parameters to display **1234** in green, including the headers and end of the frame.

LARTFT

LARIEI

ANNEX II

ANNEX 2: Send information with "QModMaster" for MODBUS TCP and MODBUS RTU

When communicating over MODBUS using QModMaster there are few differences to work over RTU or TCP.

Baud Data Bits	19200 V	Modbus TCP Settings ? ×
Stop Bits	1 *	Slave IP 010.030.090.011
RTS	OK Cancel	TCP Port 502 OK Cancel
AodMaster Options Com	nands View Language	- 🗆 Help
38 Q 🏷		<u> </u>
ibus Mode TCP	🕶 Unit ID 🚺 🗘 Scan Ra	te (ms) 1000 🗘

Fig. 33: QModMaster.

First of all, check that the connection settings are correct. These settings vary between RTU or TCP, but in both cases they must be related to the information established in the viewer's web server. In MODBUS TCP the port is always 502.

Next, you have to configure the "Unit ID" and the "Scan Rate", if there is only one device connected, an image like the previous one will be displayed.

At this point, the type of frame to be sent will be configured according to the value to be displayed, following the protocols explained in <u>section 6.4</u>. The parameters to configure are the following:

- **Function Code:** You must select the type of action you want. Either read or write to registers or Coils. All the possibilities are specified in the drop-down menu, as well as the function number that corresponds to them.
- **Start Address:** Indicates the first register to be read from or written to. It is advised to keep its value in decimal.
- Number of Registers: You must indicate how many records you want to work with.

ANNEX II

- **Data Format:** This drop-down menu allows you to change the contents of the registers to the desired system. It is very useful to enter data in the most comfortable way possible, if there is already data written, the program converts it automatically.

LARIEI

Example 1: You wish to write "HOLA" by MODBUS TCP.

First, the configuration on the web server is configured as follows:

- 1. "Global Settings", **DATA PORT** = ETHERNET.
- "Network Settings", place the right adjustments, in this case IP Addr = 10.30.90.11 like in "QModMaster".
- 3. "Communication Settings", **PROTOCOL** = MODBUS

Second, the "Write Multiple Registers" (10h) function is used to write 2 registers with the content "484Fh 4C41h" starting at address 0.

QModMaster configuration:

le Options Com	mands	View L	anguage	Help	0						
💰 🖾 O 👌	¢		4	朢		2 0	۲				
Modbus Mode TCP	▼ Unit	ID 1 🕏	Scan Ra	te (ms)	1000	÷.					
		Automation				terest			_		
Function Code	Write N	Iultiple Regist	ers (0x10)) ▼ 5	Start Add	ress 0	÷	Dec	•		
Number of Registers	2			•	Data Fo	mat Hey	(*				
	x	x x	x	x	×	x					
184F 4C41 🗙											

Fig. 34: Example QModMaster. Send "HOLA".

Once the configuration is done, click on the connector button at the top left of the panel. This will initiate communication with the display.

Finally, clicking the button immediately to the right of the connector will send the frame and show "HELLO" on the display.

NOTE: It is very useful to open the "Bus Monitor", in the "View" tab. Doing so opens a window showing each of the frames that are sent and received during the communication.

Example 2: Send "HOLA" by MODBUS RTU.

Adjust configuration like:

1. "Global Settings", **DATA PORT** = SERIAL.

LARTET

ANNEX II

- 2. "Communication Settings":
 - ADDRESS = 1.
 - **PROTOCOL** = MODBUS RTU.
 - **INTERFACE** = RS232.
 - **BAUDRATE** = 19200
 - **PARITY** = NONE
 - **DATA SIZE** = 8 bits
 - STOP BITS = 1 bit

To send the message with "QModMaster" a USB to RS-232 converter is used. To find out which "COM" port it is set to, consult it in the Windows "Device Manager". The program is configured identically to the server in RTU.

To send the register information, it is done in an identical way to the previous example in MODBUS TCP.

LARTET

ANNEX III

ANNEX 3: Configure and use function blocks to send information using a PLC.

The following examples has been done using a Siemens PLC "CPU 1512 SP-1 PN".

MODBUS_RTU: The following blocks are used to communicate with the display:

First, the blocks used to configure and make the connection are shown.

The corresponding communications card is used in the "PORT" input. In our case, "CM PtP".

Fig. 35: Comm configuration ports .

Second, the blocks and variables used to generate and send a record write message are shown.

ART

FΤ

ANNEX III

	DB	DB22 Dades TEST W										
1		Nombre		Tipo de datos	Offset	Valor de arranq	Remanen	Accesible d	Escrib	Visible en	Valor de a	
1	-00	•	Static									
2	-00		W_W1	Word		0.0	16#1E61					
3	-00		W_W2	Word		2.0	16#3034					

Fig. 36: Register to send.

Finally, the blocks and variables used to generate and send a register reading message are shown.

I A R T

FΤ

ANNEX	
-------	--

Fig. 37: Answer registers.

It is appreciated that the block is the same "Modbus_Master". By changing the input values, it is configured to be a write or read message, as well as the number of registers or their location.

IMPORTANT: When configuring the "Modbus_Master" you must consult its documents so as not to make mistakes in any of the block inputs. Depending on the MODBUS function used and its content, it will be necessary to modify the inputs so that they adapt to the needs of each information transmission.

MODBUS_TCP: The modules for "Modbus master" of MODBUS TCP are the same as for RTU.

These blocks initiate communication via MODBUS_TCP. It is necessary to set the variable "MBTCP:Ethernet" correctly.

IART

www.lartet.com

ANNEX III

Fig. 38: MODBUS_TCP communication configuration.

The IP must be configured according to the value assigned in the viewer's web server. To do this, generate the variable "MBTCP_Ethernet" and write in its type "TCON_IP_v4", in this way all the fields are developed automatically. Remember to set the desired IP and "ConnectionType" = 11 (TCP/IP).

The "MB_MODE" input (1 or 0) indicates whether the communication is to read or write registers.

UDP: Blocks downloaded from the Siemens website are used to communicate in UDP. Specifically "S7-1200/S7-1500" (LOpenUserComm_Udp).

ART

ANNEX III

Fig. 39: "LOpenUserComm_Udp" block.

The commented module is in charge of carrying out the configuration automatically, once the inputs have been established in the desired way.

WIFI: An external module (TPLINK) is used for WIFI communication, so the PLC performs communication as if it were a wired network.

RELAY: To activate the relays or the flashing, Modbus must be used. In our case we use the module shown above for Modbus_TCP. The difference is clearly visible, since in this case we work on the address "MB_DATA_ADDR" = 2 and the length of the data is "MB_DATA_LEN" = 5, since there are 5 modifiable elements (4 relays + flashing).

OPERATION	I MANUAL
-----------	----------

ARTFT

ANNEX III

	DD	25	Colls								
		Nombre		Tipo de datos	Offset	Valor de arranq	Remanen	Accesible d	Escrib	Visible en	Valor de a
1		•	Static]						
2	-00		Rele_1	Bool	0.0	false					
з			Rele_2	Bool	0.1	false					
4			Rele_3	Bool	0.2	false				\checkmark	
5			Rele_4	Bool	0.3	false					
6			Parpadeo	Bool	0.4	false				\checkmark	

Fig. 40: Relays and Blinking.

In "DB23 Coils", the desired state is written to activate or deactivate the (1 to 4) relays or the flashing (5).

I A R T F T

DECLARACIÓN DE CONFORMIDAD

